干旱区生态环境恶化经济损失计算方法初探

干旱区生态环境恶化经济损失计算方法初探

一、干旱地区生态环境劣化的经济损失计算方法初探(论文文献综述)

成波[1](2021)在《水资源短缺地区河道生态基流的计算方法及保障补偿机制研究 ——以渭河干流宝鸡段为例》文中进行了进一步梳理面对水资源短缺地区河流断流及萎缩等不可逆转的水环境恶化问题,亟需重点研究河道生态基流保障及补偿机制,以促进该区域河流水生态健康的恢复。基流保障是恢复河流水生态环境的关键,但目前为止对基于生态效益和可接受经济损失的河道生态基流计算方法、基流保障补偿量、基流保障补偿机制及补偿资金分担量等研究仍存在一些不足,迫切需要进一步探索和研究。本研究主要针对缺水地区典型河流水资源特点提出了 4种河道生态基流计算方法;建立了河道生态基流保障的补偿量计算模型;建立了河道生态基流保障补偿主体的资金分担模型;构建了河道生态基流保障补偿机制。本文以渭河干流宝鸡段为例对上述研究方法进行了验证,主要研究成果如下所示:(1)本文分别采用经验公式法、水力学及一维水质模型计算了维持河流水沙平衡、水生生物多样性保护及水质净化3个生态保护目标的适宜生态流速;结合3个适宜生态流速确定1个可以同时满足3个生态保护目标的耦合生态流速;基于3个河流生态保护目标耦合生态流速提出了河道生态基流的计算方法,并以渭河干流宝鸡段为例,研究结果表明:1)非汛期的耦合生态流速范围为[0.39,0.46 m/s]和汛期耦合生态流速底限值为0.80 m/s;2)非汛期河道生态基流为[5.66,7.42 m3/s],汛期河道生态基流底限值为21.69 m3/s;3)2000~2015年生态基流平均保障率为28.95%,不能达到政府部门要求的90%保障率。(2)将河流系统服务功能划分为经济和生态服务功能,分别采用C-D生产函数法和当量因子法分别计算了河流生态和经济服务功能价值,并将两个价值加和,当其总价值达到最大值时,生态服务功能需水量即为河道生态基流:计算基流保障的农业经济损失,将其划分为可接受和不可接受经济损失,并在基流保障经济损失计算过程中各变量变化区间划分基础上计算了不同河道生态基流临界值的可接受经济损失概率,结合水资源决策者可接受农业损失概率建立了河道生态基流计算方法;将河流水资源划分为生态基流和经济用水,分别计算了经济用水效益和生态用水价值,以前者作为后者的机会成本,结合生态基流边际效益最大化目标建立了河道生态基流计算方法,以渭河干流宝鸡段枯水年为例,结果表明:基于河流系统服务功能总价值最大化、水资源决策者可接受损失概率及生态基流边际效益最大化目标的河道生态基流分别为该段河流流量的35.02%、21.59%及33.83%。(3)基于河道生态基流定义、内涵、计算方法、区域经济发展以及政府部门对河流考核指标定量化构建了适宜河道生态基流确定方法;并在分析河道生态基流保障目标的基础上,构建了河道生态基流保障的农业补偿量计算模型,以渭河干流宝鸡段为例,研究成果表明:1)非汛期适宜河道生态基流底限为5.66 m3/s;2)基于投入成本的河道生态基流保障的农业补偿量为2.69亿元;3)基于河道生态基流价值增量的补偿量为0.95亿元;4)上述两个补偿量差异较大原因是人们对基流价值的认可度较低和外部性效应,本文以价值增量的补偿量为主,符合现阶段生活水平。(4)利用河道生态基流保障过程中不同个人及群体之间的利益关系辨明了其保障的补偿主、客体;结合5种补偿途径的优缺点明确了补偿途径的最佳补偿方案;在补偿主体分享基流价值和其总价值比例的基础上建立了保障补偿主体的资金分担量模型;结合补偿主、客体、最佳补偿方案、补偿量及补偿资金分担量构建了河道生态基流保障的农业补偿机制,以渭河干流宝鸡段2010年非汛期为例,研究成果表明:1)补偿主体分别为陕西省、宝鸡市、咸阳市、西安市及渭南市政府,补偿客体为受损农户和灌区管理局;2)现金、智力和项目补偿的3者组合是河道生态基流保障的最佳补偿方案;3)补偿主体的资金分担系数分别为70.81%、22.84%和6.35%(陕西省(包含西安市和渭南市)、宝鸡市和咸阳市);补偿主体的资金分担量分别为0.67、0.22及0.06亿元。

王理想[2](2021)在《季冻区分散性土特性与破坏机理研究》文中提出季冻区分散性土分布广泛,我国东北松嫩平原,美国西北部、密西西比河沿岸和加拿大中南部地区均分布着分散性土。分散性土是一种具有独特性质的粘性土。由于土颗粒中离子之间同晶型替换,土中的钙、镁离子被钠离子所替换使得土颗粒表面薄膜水厚度增大,土颗粒之间的排斥力大于范德华力,使得具有在低含盐量水中散开的性质。为了确保粮食安全和振兴东北经济,我国在松嫩平原分散性土分布区域上修建了大量道路、水利工程,分散性土造成了水利工程、道路工程和房屋基础出现大量的工程事故问题。季冻区冻融循环、地下水和降雨浸泡等因素对分散性土工程破坏影响表现的更为明显。分散性土的破坏具有隐蔽性、突然性和难以治理等特点,大量的分散性土破坏会造成重大的经济和财产损失。研究季冻区分散性土的破坏成因和机理对提升工程质量,保证工程安全具有重要意义。20世纪60年代就开始了分散性土研究,但是对分散性土破坏形式和特性尚缺乏总体认知,研究重点为非季冻区分散性土冲蚀和管涌问题上,对更能影响分散性土破坏事故的冻融循环、地下水和降雨浸泡等因素引起的工程破坏机理的研究尚不完善。季冻区分散性土破坏除了具有非季冻区分散性土所有的破坏形式外,还具有独有的破坏形式。本文基于工程破坏现象,总结归纳了季冻区分散性土的破坏形式和特性,对季冻土区分散性土冻融循环破坏、冻融-浸泡变形破坏及滑坡失稳破坏三种破坏形式的特性及成因、诱发机制和破坏机理进行了研究,揭示了季冻区分散性土破坏特性,阐明了成因、机理和诱发机制。主要工作和成果如下:(1)总结归纳了季冻区分散性土的破坏形式,指出农业灌溉是分散性土形成的重要因素,阐明了影响季冻区分散性土破坏的因素。(2)通过自主设计试验,提出了分散性土的水热特性和冻融循环变形规律,阐明了季冻区分散性土冻融循环破坏成因。(3)通过自主设计冻融-浸泡压缩变形特性试验,阐明了分散性土冻融-浸泡下的变形规律与破坏机理,提出了分散性土冻融-浸泡条件下压缩变形计算方法。(4)阐明了季冻区分散性土滑坡失稳破坏类型。通过系统试验,提出了季冻区分散性土抗剪强度特征,通过数值模拟揭示了季冻区分散性土边坡滑坡失稳过程和诱发机制。

郭盛明[3](2021)在《综合干旱指数构建及其适用性研究 ——以黑河流域中上游为例》文中研究说明干旱是一种频发的自然灾害,随着全球气候的变化,极端干旱事件的发生越加频繁,给我国农业、工业以及社会经济的发展带来了很大的影响。干旱指数是监测、评价干旱发生、发展和演变的重要工具。传统的单类型干旱指数侧重描述干旱的某一方面,难以描述干旱发展及传递过程中的复杂特征。基于权重法、主成分分析法、Copula函数法等方法构建的综合干旱指数逐渐受到关注。但关于多种综合干旱指数构建方法的比较及其适用性分析研究较少。因此,开展综合干旱指数的构建方法及适用性比较研究,可为全面系统地指导防旱抗旱工作提供依据。本研究以黑河流域中上游为研究对象,综合参数化方法和非参数化方法计算3种单类型干旱指数,包括表征气象干旱的标准化降水蒸散发指数(SPEI)、表征农业干旱的标准化土壤湿度指数(SSMI)和表征水文干旱的标准化径流指数(SRI)。采用熵权法、主成分分析法、Copula函数法、主成分分析-Copula函数法以及核熵成分分析法联合3种单类型干旱指数构建了5种综合干旱指数。采用皮尔逊相关系数分析综合干旱指数和单类型干旱指数间的相关关系,对比典型历史旱情事件验证了综合干旱指数的适用性,并利用M-K趋势检验、小波分析等方法分析了单类型干旱指数和最适用的综合干旱指数所表征干旱的时空演变特征。取得以下主要结论:(1)基于气象站、多源遥感和水文站数据资料,计算了季尺度和年尺度下黑河流域中上游0.125°×0.125°分辨率下的SPEI、SSMI和SRI,分析了3种单类型干旱指数所表征干旱的趋势演变、周期演变、年代演变及空间演变。结果表明,气象干旱在流域89%的区域表现为干旱加重,且流域45%的区域为干旱显着加重。农业干旱在流域94%的区域表现为干旱减轻,且流域64%的区域为干旱显着减轻。水文干旱在整个流域均表现为干旱减轻,且流域24%的区域为干旱显着减轻;3种单类型干旱指数表征的干旱存在33~45年的长周期、28~30年的中长周期、11~18年的中周期及3~10年的短周期;20世纪70年代、80年代、90年代及21世纪初4个时期中,气象干旱旱情严重程度为20世纪90年代>21世纪初>20世纪80年代>20世纪70年代。农业干旱和水文干旱旱情严重程度为20世纪90年代>20世纪70年代>20世纪80年代>21世纪初;3种单类型干旱轻中旱发生频率不超过45%,而重特旱发生频率不超过10%,气象干旱应重点关注临近下游区域,农业干旱应重点关注祁连县及肃南县,水文干旱应重点关注祁连县及中游地区。(2)基于3种单类型干旱指数构建了5种综合干旱指数,分析了各指数所表征干旱的特征,并验证其适用性。熵权法、主成分分析法和Copula函数法构建的综合干旱指数所表征干旱趋势表现为干旱减轻,而主成分分析-Copula函数法和核熵成分分析法构建的综合干旱指数所表征干旱趋势表现为干旱加重;熵权法和主成分分析法构建的综合干旱指数波动较小,其他3种方法构建的综合干旱指数波动较大。此外,Copula函数法对应指数值整体要小于其他4种方法结果;5种综合干旱指数和3种单类型干旱指数的皮尔逊相关系数平均值由大到小排序为:Copula函数法>熵权法>主成分分析法>主成分分析-Copula函数法>核熵成分分析法;1969年春、1997年秋、2009年冬的典型历史旱情事件验证最优排序为:Copula函数法>核熵成分分析法>主成分分析-Copula函数法>主成分分析法>熵权法。(3)Copula函数法构建的综合干旱指数在5种综合干旱指数中适用性最好。其表征的综合干旱趋势演变为流域70%的区域干旱减轻,且流域32%的区域为干旱显着减轻;综合干旱周期演变以25~30年的中长周期和35~40年的长周期为主;4个不同时期中,旱情严重程度排序为20世纪90年代>20世纪70年代>20世纪80年代>21世纪初;轻中旱发生频率为25%~60%,应重点关注临近下游地区。而重特旱发生频率为10%~60%,应重点关注祁连县、肃南县和民乐县。

马茜蓉[4](2021)在《中亚夏季极端降水变化的多尺度特征及影响机理》文中进行了进一步梳理中亚干旱半干旱区水资源短缺,是对气候变化响应最敏感的区域之一。中亚地区具有冬、夏季多降水和山区多降水的特征。近几十年,在全球气候变化的影响下,中亚地区降水出现增加趋势;极端降水事件不确定性和强度增加;相关次生灾害和经济损失呈指数上升。1990s左右中亚五国地区台站观测气象数据的中断致使中亚地区极端天气气候事件研究的基础数据和研究成果相对较少,深入研究中亚地区夏季极端降水变化特征及其物理机制,对提高干旱区极端事件认识、极端降水预报水平、灾害防御部署和水资源合理分配具有重要的科学指导意义。因此,本论文通过观测和再分析资料结合,利用气象统计和天气学动力分析方法以及数值模式模拟,系统地分析了中亚夏季极端降水变化特征及多尺度耦合对其的影响,本研究的主要结论包括:1.1979-2018年中亚夏季极端降水整体呈现增加趋势,以中亚东部地区(65°E以东)增加最显着。选取CPC(Climate Prediction Center,CPC)逐日降水数据作为本研究基础数据,该资料能够较好地刻画中亚夏季降水的特征并发现:中亚地区夏季降水和极端降水具有由北向南逐渐递减和山区多降水的特征,且均存在准3年和准10年尺度周期;中亚夏季极端降水对降水的贡献率可达51.5%;近40年中亚夏季降水和极端降水呈现显着增加趋势,并且具有明显的区域差异,以中亚东部地区(65°E以东地区)显着增加为主,尤其是哈萨克斯坦北部和天山地区;中亚东部极端降水在2000年后呈现显着的年代际增加,最近十年极端降水强度和发生概率增加最显着。2.中亚东部极端降水年代际增加受大尺度环流和关键环流因子年代际加强影响。欧亚大陆上空50°N附近异常的准定常波列影响中亚东部极端降水年际变化,其特征为:北大西洋高纬、中亚地区气旋性异常加强,北大西洋低纬地区、欧洲和东亚地区反气旋异常加强;环流异常导致巴尔喀什湖附近长波槽加深,高纬巴伦支海和喀拉海地区的水汽和西南暖湿水汽向中亚东部输送并在槽前辐合上升;NAO(North Atlantic Oscillation,NAO)和EA/WR(East Atlantic/Western Russia,EA/WR)负位相加强是影响上述准定常波列异常的关键环流因子,2000年后影响极端降水的异常环流和关键环流因子年代际加强导致极端降水年代际增加。3.天气尺度瞬变和大尺度环流异常共同作用使得长波槽脊发展、天气尺度瞬变扰动加强以及中小尺度涡旋活动增加,导致中亚东部极端降水增加。发生极端降水时低层和中层天气尺度动能传输是动能增加的主要贡献项之一。大尺度环流异常背景下,欧亚大陆上空有两组天气尺度的瞬变波通过增加中亚东部地区的瞬变涡活动和瞬变扰动动能,使得中亚地区气旋性异常加强,巴尔喀什湖长波槽加深。加深的长波槽促进中亚南部暖湿水汽和中小尺度涡旋沿槽前西南气流向中亚东部地区输送,导致该地区极端降水增加。与此同时,当天山地区发生极端降水时,地形抬升激发更多的小尺度涡旋,并随着槽前西南气流继续向北输送至哈萨克斯坦北部,为该地区极端降水维持和加强提供了水汽和动力条件,最终在不同尺度环流共同作用影响下导致中亚东部极端降水增加。4.北大西洋夏季海温异常和巴伦支海春季海冰退化是影响中亚东部极端降水增加的重要外强迫因子。北大西洋海温变化呈现出“+-+”的纬向分布特征,其中高纬地区海温增加速率更快,使得50°N附近海温梯度增大,Rossby波能量向东频散加强,导致影响极端降水的大尺度环流异常加强。北大西洋高纬海温年代际升温与环流异常和中亚东部极端降水年代际增加密切相关。北大西洋中低纬海温正异常通过影响30°N附近准定常波列导致印度半岛和东亚地区反气旋加强促进向中亚输送的偏西南水汽和NAO、EA/WR负位相年际加强,影响中亚东部极端降水增加。春季巴伦支海海冰融化,一方面通过加强巴伦支海至喀拉海地区低压异常来加深巴尔喀什湖附进的长波槽,影响哈萨克斯坦北部极端降水增加。另一方面导致夏季巴伦支海至喀拉海和北大西洋高纬海温正异常加强,分别通过加强极地-欧亚大陆遥相关型,EA/WR和NAO负位相来影响中亚东部极端降水年际和年代际增加。

周炎[5](2021)在《酸性大气环境下RC框架剪力墙结构抗震性能与地震韧性评估》文中研究指明位于酸性大气环境中的钢筋混凝土(Reinforced concrete,RC)结构不仅长期面临地震灾害的威胁,还同时遭受环境中氢离子、硫酸根离子和硝酸根离子等侵蚀作用影响,导致混凝土及其内部钢筋发生不同程度的腐蚀,引起混凝土保护层开裂脱落、钢筋截面削弱以及钢筋与混凝土之间粘结性能退化等问题,导致RC建筑结构抗震性能降低、地震韧性衰退和地震灾害风险增加。目前,该问题已得到国内外学者的广泛关注,亦取得了一定的研究进展。然而,国内外关于酸性大气侵蚀环境下RC结构耐久性和抗震性能交叉领域的研究较为滞后,无法为该环境下RC结构地震韧性评估提供科学理论支撑。因此,为减少酸性大气环境下地震灾害造成的人员伤亡和财产损失,开展该环境下RC结构抗震性能与地震韧性评估研究十分必要和迫切。本文以酸性大气环境下腐蚀RC剪力墙构件抗震性能为切入点,进而延伸至以RC剪力墙为主要抗侧力构件的RC框架剪力墙结构地震韧性研究,主要工作与结论如下:(1)采用人工气候环境腐蚀技术模拟酸性大气环境,对9片不同设计参数下RC剪力墙试件进行不同循环次数的加速腐蚀试验,继而进行拟静力加载试验。试验结果表明:酸性大气环境侵蚀将显着影响RC剪力墙破坏过程与模式,削弱其承载力、变形、耗能和刚度等抗震性能,同时,不同设计参数下的RC剪力墙抗震性能随腐蚀程度退化规律不同。(2)基于既有耐久性研究成果对单元中混凝土与钢筋本构关系进行考虑腐蚀影响的修正,继而基于本文试验数据对二维RC板本构(FSAM)中的抗剪参数予以重新标定,对腐蚀后钢筋粘结滑移本构予以修正,并基于应变渗透理论模拟腐蚀后界面间的粘结滑移效应,最终提出了酸性大气环境下腐蚀RC剪力墙数值建模方法,并基于试验数据验证了其准确性。(3)采用随机森林算法对RC剪力墙抗震试验数据集进行挖掘学习,提出了RC剪力墙破坏模式高效识别方法,并基于腐蚀RC剪力墙试验结果验证了其准确性与适用性。结合破坏模式识别技术与腐蚀RC剪力墙数值模拟方法,对不同破坏模式下的2304个腐蚀RC剪力墙进行数值模拟试验,继而基于模拟数据对既有RC剪力墙抗剪承载力公式进行修正,最终提出了酸性大气环境下不同破坏模式RC剪力墙抗剪承载力计算公式。(4)通过工程实测与理论分析,建立了酸性大气环境下混凝土腐蚀程度与钢筋锈蚀程度的经时概率模型与腐蚀RC构件的破坏状态划分方法;考虑材料强度变异性与腐蚀程度不确定性,建立了不同服役时间与设计参数下的RC框剪结构主要结构构件数值模型;结合本文数值模拟方法与最大似然估计和假设检验的统计分析方法,获得了各构件不同服役时间与损伤状态下的层间位移角概率分布统计参数,进而建立了酸性大气环境下RC框剪结构主要结构构件基于威布尔累积概率分布的易损性模型。(5)建立了酸性大气环境下RC框剪典型结构,继而采用基于IDA分析方法,获得了不同强度地震作用下典型结构地震响应;修正《建筑抗震韧性评价标准》中的损失与恢复分析方法,结合腐蚀RC构件易损性模型,得到了不同地震动下各典型结构的经济损失和恢复时间分布;进而,以经济损失标定功能损失并建立功能恢复模型,绘制了典型结构功能-时间-强度韧性曲面。最终,建立了可用于表征不同强度地震作用下腐蚀RC框剪结构综合地震韧性的定量评估框架,并据此得到了酸性大气环境下RC框剪结构地震韧性随服役时间与层数的变化规律。

李根峰[6](2019)在《风积沙粉体混凝土耐久性能及服役寿命预测模型研究》文中进行了进一步梳理本研究以中国内蒙古自治区广泛分布的风积沙为原材料制备风积沙粉体,应用“碱激发”原理激发其活性,并替代水泥基胶凝材料制备风积沙粉体混凝土,同时,在冻融、盐浸、干湿、碳化、风沙冲蚀等单一或耦合工况下研究风积沙粉体混凝土损伤劣化过程、劣化机理及耐久性能。通过相对动弹性模量、质量损失、碳化深度、抗压强度耐蚀系数等指标表征其宏观性能,并通过场发射扫描电镜(FESEM)、纳米压痕技术(NI)、能谱分析(EDS)、X射线衍射(XRD)、光谱半定量全分析(SQFSA)、核磁共振技术(NMR)研究其微观形貌、微观力学、水化产物、孔隙变化规律等微观特性,最后在宏、微观试验研究的基础上,对风积沙粉体激发机理及风积沙粉体混凝土耐久性能进行深入探讨,结果表明:(1)风积沙粉体改性试验中,风积沙粉体活化率随着激发剂质量分数的增加而增加,且二氧化硅(Si02)等活性物质随着溶液碱性的增强,溶出量逐渐增多;硫酸钠(Na2SO4)对风积沙粉体的改性效果优于氢氧化钠(NaOH),且风积沙粉体掺量为15%,硫酸钠掺量为2.0%,预养护温度为35℃时,风积沙粉体—水泥胶砂试件中的钙矾石发育良好,可充分填充风积沙粉体—水泥胶凝体系内部孔隙,内部20nm以下的不连通的毛细孔的比例达到85.69%,束缚流体饱和度也提高至94.311%,活性指数高达108.2%。(2)冻融、盐浸耦合作用下风积沙粉体混凝土相对动弹性模量随着冻融循环次数的增加,呈现先降低,稳定一段时间后下降至破坏的规律,同时,风积沙粉体混凝土在3.0%、6.0%的硫酸镁溶液中生成钙矾石(AFt),在6.0%的硫酸镁溶液中还会生成石膏(CaSO4),这些针柱状、纤维状产物填充混凝土内部因冻胀作用而产生的裂隙,进而使风积沙粉体混凝土的孔隙度、渗透率较普通混凝土低,束缚流体饱和度高于普通混凝土,且强度等级为C35的风积沙粉体混凝土中无害孔及少害孔所占比例为61.12%,比强度等级为C35的普通混凝土高出11.79%,组织结构更加密实,故风积沙粉体混凝土较普通混凝土在硫酸盐溶液中具有更好的抗冻性能。(3)冻融、干湿耦合作用下风积沙粉体混凝土的损伤劣化显着性高于冻融或干湿单一因素作用时,冻融作用使风积沙粉体混凝土结构由致密变为疏松多孔,孔隙度增大,为后续干湿作用时盐分进入提供了更多的孔隙通道,而干湿作用加速了硫酸盐对其的化学腐蚀,生成膨胀性产物钙矾石。另外,冻融—干湿耦合作用下风积沙粉体混凝土中多害孔的比例高出干湿—冻融耦合作用7.8%,渗透率高出干湿—冻融作用后3.7倍,钙矾石的富集程度远高于干湿—冻融耦合作用,且孔隙度较初始状态增加了 2.1倍,束缚流体饱和度也低于干湿—冻融耦合作用后13.64%,故风积沙粉体混凝土在冻融—干湿耦合作用下的劣化显着性高于干湿—冻融耦合作用。(4)风沙冲蚀破坏了风积沙粉体混凝土表面水泥石结构,风沙冲蚀—碳化耦合作用较单一碳化作用时碳化深度增加3倍以上;碳化作用时由于碳化产物自身的膨胀作用使混凝土变的疏松,碳化—风沙冲蚀耦合作用较单一冲蚀作用时质量损失增加1.6倍以上;风沙冲蚀、碳化耦合作用下普通混凝土劣化显着性高于风积沙粉体混凝土,且碳化—风沙冲蚀耦合作用对风积沙粉体混凝土的劣化显着性高于风沙冲蚀—碳化耦合作用,也高于单一的风沙冲蚀或碳化作用时;风沙冲蚀—碳化耦合作用下,风积沙粉体混凝土在90°冲蚀角作用时产生的冲蚀坑洞深度将近两倍于45°时,且风沙冲蚀作用后,碳化深度随着龄期的增加而逐渐减少,14d龄期时强度等级为C25的风积沙粉体混凝土碳化深度已低于强度等级为C25的普通混凝土 6%,28d龄期时达到10.6%,同时,风积沙粉体混凝土孔隙度下降幅度高于普通混凝土7.2%,20nm以下的无害孔的比例高于普通混凝土 25.15%,且沿碳化深度方向10-15mm范围内形成碳化区、碳化产物发生变化区(生成硫酸钙)及非碳化区共同存在的混合区。(5)冻融、碳化耦合作用下,风积沙粉体混凝土相对动弹性模量下降幅度低于普通混凝土,且冻融—碳化与碳化—冻融耦合作用相比,冻融—碳化耦合作用下风积沙粉体混凝土相对动弹性模量高于碳化—冻融耦合作用下1.5倍,碳化深度低于碳化—冻融耦合作用下5.0%,且冻融—碳化耦合作用下风积沙粉体混凝土内无害孔高于碳化—冻融耦合作用下16.85%,多害孔低于碳化—冻融耦合作用下22.5%;碳化—冻融耦合作用下风积沙粉体混凝土束缚流体饱和度高出普通混凝土 0.34%,渗透率高出1.5%,冻融—碳化耦合作用下风积沙粉体混凝土束缚流体饱和度高出普通混凝土 21.86%,无害孔高出15.35%,多害孔、孔隙度分别低于普通混凝土 22.25%、3.06%,渗透率低于普通混凝土 50倍,故风积沙粉体混凝土劣化显着性低于普通混凝土,且碳化—冻融耦合作用下风积沙粉体混凝土的劣化显着性高于冻融—碳化耦合作用。(6)风积沙粉体混凝土与普通混凝土在不同的耦合工况作用下的劣化损伤机制既表现出一定的一致性,又表现出一定的差异性,微观力学特性中的硬度及孔隙参数中的孔隙度对二者影响均较大,但无害孔(<20nm)对普通混凝土的影响较大,少害孔(20-50nm)对风积沙粉体混凝土的影响较大。同时,作者基于灰色理论与硫酸盐侵蚀损伤机理,并结合现有混凝土服役寿命预测模型及室内加速试验,建立了风积沙粉体混凝土基于碳化的服役寿命灰色预测模型与基于硫酸盐侵蚀损伤的服役寿命预测模型,且模型预测精度良好。综上所述,本研究对于风积沙粉体在水利、建筑等工程中的应用具有实际指导意义,社会及经济效益显着。

王竹君[7](2018)在《改进的工程结构全寿命设计理论及全寿命成本模型》文中指出工程结构的全寿命设计方法旨在结构的设计阶段,通过考虑结构在全寿命周期中可能遭受的荷载、环境作用和灾害作用,以及全寿命工程活动可能造成的经济影响、环境影响和社会影响,制定结构的设计方案、维护方案及灾害应对方案等,使结构在全寿命过程中满足性能要求,并使各类不良影响降至最低。然而,工程结构的全寿命设计理论体系仍存在一些缺陷,全寿命设计方法的实际应用存在阻碍,全寿命设计过程中无法有效地考虑可持续性要求,而全寿命成本模型的内涵也不完善。鉴于以上问题,本文旨在研究和改进工程结构的全寿命设计理论和设计方法,建立工程结构的全寿命设计绿色指标体系,提出能够覆盖多个设计目标的全寿命分层设计实用方法,通过货币化的方法将可持续性评价中的环境影响和社会影响转化为环境成本和社会成本,并基于经典的结构全寿命成本模型建立包含直接成本、环境成本和社会成本的全寿命总成本模型,通过软件开发和实例分析的方式将全寿命总成本应用于工程实践中,为结构全寿命设计的理论研究和实际应用提供了参考。本文的主要研究工作如下:(1)从工程结构设计理论的演变历程入手,探讨了各阶段设计方法的特点与不足。结合前人提出的全寿命设计目标体系和当下的设计理论发展,建立了修正后的全寿命设计目标体系。其中,传统目标包括结构性能、使用寿命和经济效益目标,而绿色目标包括区域环境、社会影响和全球环境目标。从设计目标、设计时域、动态设计和基于耐久性的设计等方面分析了全寿命设计方法的优势,提出了全寿命设计的指标体系。(2)在工程结构全寿命周期设计理论体系的基础上,总结国内外的绿色建筑评价体系,构建了工程结构全寿命设计的绿色指标体系,包括以区域环境为对象的“区域环境指标”、以人为对象的“用户及社会满意度指标”和以全球生态为对象的“全球环境指标”。通过指标分层、指标分类和权重分析,建立了详细的工程结构全寿命绿色设计指标体系,并针对特定的结构形式、用途和所处环境,构建了沿海高速公路桥梁结构的全寿命设计绿色指标体系框架。(3)结合工程结构的传统设计和绿色设计目标,提出了钢筋混凝土结构的全寿命分层设计法,并将全寿命分层设计的设计过程分为六个层次,涵盖了安全和可靠性、耐久性、经济性、区域环境影响、社会影响和全球环境影响等方面。以某海洋环境中的钢筋混凝土高速公路桥梁结构为例,阐述了全寿命分层设计法的设计过程。与传统结构设计法的结果进行对比,体现了全寿命分层设计法的优势。(4)以结构耐久性为主线,对现有工程结构全寿命设计理论框架进行重组,建立了包含可靠性指标和可持续性指标的全寿命设计指标体系。确定基于结构动态性能的全寿命设计思路;完善全寿命成本的内涵;建立结构可持续发展指标,解决概念模糊和指标重复的问题;强调工程结构耐久性在全寿命设计理论中的贯穿作用。(5)基于污染防治理论提出环境成本模型,计算了常用建筑材料、能源、运输方式和建筑机械的环境成本。对某桥梁结构进行方案比选,对比了钢筋混凝土梁和钢梁在初始建造阶段的直接成本和环境成本。引进了包含环境成本的结构全寿命成本模型,考虑钢梁体系的初始建造成本和后期维护成本,对其进行包含环境成本的全寿命成本分析,并分析了由直接成本和环境成本引起的不确定性,并采用敏感性分析的方法研究了环境成本折现率对结构全寿命总成本的影响。(6)将工程结构的社会影响划分为个人层面影响和社会层面影响,个人层面影响包括身体状态、心理状态和个人经济状态,而社会层面影响包括人居环境、社会经济发展和社会资源,以土木工程基础设施为侧重点,通过具体的计算模型将以上社会影响转化为社会成本。采用劣化过程中的桥梁结构为案例,对社会成本各部分的计算加以说明。根据桥梁的劣化模型、维护方案和工程事故信息,对劣化桥梁结构进行了包含社会成本的全寿命成本分析。(7)工程结构的全寿命总成本为结构在全寿命各阶段的直接成本、环境成本和社会成本之和,基于环境成本和社会成本的计算模型,以MATLAB为平台设计和开发了“工程结构全寿命总成本计算软件”,用于结构的全寿命总成本分析和评价。以宁波市某沿海桥梁为例,针对耐久性退化过程制定了两套维护方案,分别进行了全寿命总成本分析,并对三类成本进行了不确定性分析。最后,采用效用理论对全寿命成本做标准化处理,并对两套维护方案进行比选。

王鹏涛[8](2018)在《西北地区干旱灾害时空统计规律与风险管理研究》文中进行了进一步梳理全球气候的持续增暖,引起水文循环的变化,导致全球干旱灾害发生频率增加、强度加重、干旱范围扩大。西北地区是我国主要的干旱分布区,同时也是全球同纬度干旱程度最高的区域之一。20世纪后期以来,西北地区气候呈现出暖湿化趋势,但是西北地区东部的干旱化趋势也较为明显,且从四季来看西北地区春季干旱趋势仍然较为显着。因此,西北地区暖湿化的时空差异和尺度特征仍不明确,西北地区干旱的时空演变趋势仍存在很多不确定性。明晰西北地区干旱时空变化特征以及未来演变趋势,并在此基础上对西北地区干旱风险进行系统分析、科学评估与风险区划,事关区域水资源管理的具体成效。基于此,本文以西北地区为研究区域,采用改进后的SPEI指数方法、线性回归方法、反距离加权插值法、自然灾害趋势判断模型、熵权分析法、灾害系统论等方法对西北地区气候变化背景、干旱灾害时空演变规律与趋势判断、干旱灾害归因、干旱风险评价与区划进行研究。本研究取得的主要成果有:(1)西北地区对全球气候变化的响应特征:1960-2016年,西北地区气温呈现显着上升趋势,且1990年之后升温速率明显比1990年之前要快。降水量整体呈现上升趋势,但秋季降水呈现递减趋势,从空间来看西北地区东部降水在减少。全区大部分地区平均风速显着下降,且年际间波动幅度较大。全区日照时数普遍减少,四季中仅春季日照时数有所增加。全区相对湿度普遍减少,塔里木盆地周围相对湿度增加趋势明显。(2)西北地区干旱时空演变特征:多年来,西北地区、西风气候区与高原气候区SPEI呈现上升趋势为主,仅东部季风区SPEI呈下降趋势。从季节来看,西北地区春季SPEI指数呈现出下降趋势,而其余季节SPEI指数均呈上升趋势。空间上,新疆西北部、中部与东部、青海中部、内蒙阴山附近等地是湿润化趋势影响的主要地区,新疆西南部、甘肃东部、宁夏等地则普遍存在干旱化发展趋势。(3)西北地区干旱趋势判断:在年和四季尺度,未来几年内西北地区轻旱与中旱发生的站次比均超过了 50%,且夏季西北地区干旱范围最广。从地区来看,未来三年内青海省在春季、甘肃与宁夏在夏季、内蒙西部在秋季、陕西全省在秋季与冬季发生灾害的站点较多。从全区来看,西北地区年尺度轻旱与中旱趋势判断年份为2018年。西风气候区春季中度以上旱灾趋势判断年份为2018年。高原气候区年尺度重旱趋势判断年份为2018年或2020年。东南气候区年尺度中度以上旱灾的趋势判断年份为2018年。从各省份来看,青海年尺度中度以上旱灾的趋势判断年份为2019年。宁夏与陕西年尺度中度以上旱灾的趋势判断年份均为2018年。内蒙西部年尺度重度以上旱灾的趋势判断年份为2019年。新疆年尺度重度旱灾的趋势判断年份为2020年。甘肃年尺度重度旱灾的趋势判断年份为2018年。(4)西北干旱灾害的归因:西北地区干旱指数对降水表现为正敏感性,对气温、平均风速、日照时数则表现为负敏感性。降水占干旱灾害变化主导因素的站点主要分布在区域的东部,占到了区域总站点数的71.6%。风速占主导的站点仅占总站数的27.0%,基本分布在西风气候区。气温占主导的站点则仅有两个。主导因子的空间分布格局反应了区域气候变化的特点。(5)干旱风险评价体系构建与风险区划:西北地区东部为干旱致灾因子的高风险区。西北地区东南部孕灾环境脆弱性相对较低,其余地区脆弱性较高。全区承灾体暴露性均较低,高暴露区域零星分布于各省区。各省之间防灾减灾能力整体差异程度不大。从各省份来看,各省平均干旱风险普遍高于0.40,这表明西北地区整体干旱灾害风险较高。空间上干旱风险较高的区域分布在新疆南部昆仑山一带、青海柴达木盆地、青海三江源地区、甘肃东部、宁夏南部、内蒙阿拉善左旗、甘肃西部与新疆交界区、新疆东部七角井站附近等地。(6)西北地区干旱灾害风险管理对策包括:完善干旱灾害风险管理体系;合理配置水资源;进行科学合理的干旱风险评估;对干旱灾害风险要素进行灾前干预;根据区域实际情况,建立相应的抗旱应急预案与防旱抗旱规划等地方管理办法与条款;建立长效的灾害经济投入机制;加强灾害管理科学研究及科研成果转化,提高民众的灾害意识、抗旱能力与知识水平;加强生态文明建设,以生态保护的方式进行减灾。本研究的创新点表现为:(1)发现西北地区“暖湿化趋势”具有区域差异和尺度特征,认为空间尺度上西北地区东部存在干旱化趋势,时间尺度上西北地区春季干旱程度在加剧。(2)在站点尺度上,创新和完善了重大自然灾害趋势判断方法,丰富了西北地区不同时空尺度下的干旱灾害趋势判断案例。(3)对西北地区干旱演变进行归因,提出降水和风速对西北地区干旱演变起主导作用。(4)构建和完善了西北地区干旱风险评价指标体系,分别在栅格尺度和县域尺度对西北地区干旱风险进行了精细化评价和区划。本文对西北地区干旱时空演变、趋势判断以及风险评价进行了研究和探索。该研究可以为区域灾害管理以及水资源配置提供科学与实践参考,也可以为重大自然灾害趋势判断与灾害风险评价体系的集成研究提供案例及框架支持。

郑开雄[9](2018)在《应对气候变化的滨海城市空间结构适应模式研究 ——以厦门为例》文中提出气候变化与城镇化深刻影响着人类生存与发展,如何应对气候变化已成为全球面临的重大挑战。城市作为复杂动态系统由多种因素构成,而作为城市“第一资源”的城市空间是人居环境和人类活动的载体,其结构影响气候变化和城市发展。滨海城市作为人口密集、海陆交界地区,气候变化与快速城镇化叠加,城市空间结构剧烈变迁,全球变暖、海平面上升、气象灾害频发,城市气候承载加剧,既有城市空间结构模式无法应对,如何从技术与方法上认知空间、解析空间、评测空间及优化空间,适应气候变化,是城市应对气候变化可持续发展的关键所在。基于国内外应对气候变化科学发展动向,针对我国滨海城市快速城镇化进程中,气候变化与城市空间结构的胁迫、风险与影响,城市空间结构亟待转型优化而又缺乏科学制定方法和适应、有效的应用模式,本文以应对气候变化为目标,以城市空间结构为对象,基于GIS、DPSIR、灰关联熵法、状态空间法和复杂适应系统理论(CAS),从外力适应、内力适应和综合适应层面,研究基于风险管控、气候承载和复杂适应的滨海城市空间结构适应优化的技术与方法,以厦门为案例城市,开展应对气候变化的滨海城市空间结构适应模式研究。(1)首先研究“什么是应对气候变化的城市空间结构适应?”进行应对气候变化的城市空间结构适应理论方法和概念模型研究。本文基于DPSIR,提出了城市适应气候变化的核心测度——城市气候承载力概念(UCCC),并阐释其内涵、价值、特征,构建了城市气候承载力结构模型,,构建了应对气候变化的滨海城市空间结构适应概念模型(USSCACM),提出结构输入要素:胁迫、风险、影响和模式输出要素:风险管控、气候承载和复杂适应,进而设计构建了概念模型的5个主要模块内容和相关方法技术体系:情景模块(事实与趋势)、关系模块(胁迫、风险与影响)、管控模块(外力适应)、承载模块(内力适应)和适应模块(综合适应)。(2)然后研究“为什么要进行应对气候变化的滨海城市空间结构适应模式研究?”进行滨海城市气候变化与空间结构演变情景与关系研究。基于数理统计分析方法和系统耦合理论,对我国滨海城市气候变化和空间结构演变进行历史回顾性分析,采用线性趋势估计法、Mann-Kendall突变检验法,揭示滨海城市近50年气候变化事实与特征,情景预测未来气候变化趋势,定性识别滨海城市空间结构演变特征,辨析提出滨海城市空间结构与气候变化的胁迫、风险与影响,并以厦门为例进行实证研究。(3)继而研究“如何评测气象灾害风险与空间区划?”进行外力适应——滨海城市气象灾害风险评测与空间区划研究。基于风险指数法、层次分析法、加权综合评分法、专家评估法,提出滨海城市气象灾害风险区划方法,构建气象灾害风险评价指标体系与评价模型,界定气象灾害风险分级判定标准,在此基础上,基于GIS进行气象灾害风险区划,编制城市气象灾害风险区划图(UMDR Map),判定气象灾害风险等级和差异性空间分布状态,从而确定基于风险管控的滨海城市空间结构适应优化的热点区域,并以厦门为例进行实证研究。(4)接着研究“如何评测城市气候承载力与空间分布?”进行内力适应——滨海城市气候承载力评测与空间分布研究。基于DPSIR、灰关联熵法、状态空间法,提出滨海城市气候承载力评测技术与方法,构建城市气候承载力评价指标体系和评价模型,界定城市空间气候承载状态分级判定标准与值域范围。在此基础上,基于GIS进行城市气候承载力空间分布分析,编制城市气候承载分布图(UCC Map),判定气候承载状态等级和差异性空间分布状态,从而确定基于气候承载的滨海城市空间结构适应优化的热点区域,并以厦门为例进行实证研究。(5)最后研究“如何进行应对气候变化的城市空间结构适应优化?”进行应对气候变化的滨海城市空间结构适应模式研究。在前文研究基础上,基于复杂适应系统理论(CAS)和GIS,针对滨海城市气候变化与空间胁迫、风险与影响,依据滨海城市气象灾害风险评测与空间区划、滨海城市气候承载力评测与空间分布的相关研究结果,基于风险管控、气候承载、气候适应3个层面,构建城市空间结构气候适应性单元模型,并以此为模块进行复杂适应性内部组织、外部组织和系统组织,构建社区级、片区级、城市级应对气候变化的滨海城市韧性、均衡、网络化的空间结构适应模式。并以厦门市为例进行实证研究,基于GIS叠合气象灾害风险区划图(UMDR Map)与城市气候承载分布图(UCC Map),编制城市空间气候地图(USC Map),提出城市空间结构适应优化建议,并基于全球变暖、气候变化和气象灾害情景分析,提出减缓、适应、韧性规划策略。

《中国公路学报》编辑部[10](2014)在《中国桥梁工程学术研究综述·2014》文中研究表明为了促进中国桥梁工程学科的发展,系统梳理了各国桥梁工程领域(包括高性能材料、桥梁作用及分析、桥梁设计理论、钢桥及组合结构桥梁、桥梁防灾减灾、桥梁基础工程、桥梁监测、评估及加固等)的学术研究现状、热点前沿、存在问题、具体对策及发展前景。首先在总结了中国桥梁工程建设成就的同时对未来桥梁工程的发展趋势进行了展望;然后分别对上述桥梁工程领域各方面的内容进行了细化和疏理:高性能材料方面重点分析了超高性能混凝土(UHPC)和CFRP材料,桥梁作用方面分析了车辆荷载和温度,钢桥及组合结构桥梁方面分析了钢桥抗疲劳设计与维护技术和钢-混凝土组合桥梁,桥梁防灾减灾方面分析了抗震、抗风、抗火、抗爆和船撞及多场、多灾害耦合;最后对无缝桥、桥面铺装、斜拉桥施工过程力学特性及施工控制、计算机技术对桥梁工程的冲击进行了剖析,以期对桥梁工程学科的学术研究提供新的视角和基础资料。

二、干旱地区生态环境劣化的经济损失计算方法初探(论文开题报告)

(1)论文研究背景及目的

此处内容要求:

首先简单简介论文所研究问题的基本概念和背景,再而简单明了地指出论文所要研究解决的具体问题,并提出你的论文准备的观点或解决方法。

写法范例:

本文主要提出一款精简64位RISC处理器存储管理单元结构并详细分析其设计过程。在该MMU结构中,TLB采用叁个分离的TLB,TLB采用基于内容查找的相联存储器并行查找,支持粗粒度为64KB和细粒度为4KB两种页面大小,采用多级分层页表结构映射地址空间,并详细论述了四级页表转换过程,TLB结构组织等。该MMU结构将作为该处理器存储系统实现的一个重要组成部分。

(2)本文研究方法

调查法:该方法是有目的、有系统的搜集有关研究对象的具体信息。

观察法:用自己的感官和辅助工具直接观察研究对象从而得到有关信息。

实验法:通过主支变革、控制研究对象来发现与确认事物间的因果关系。

文献研究法:通过调查文献来获得资料,从而全面的、正确的了解掌握研究方法。

实证研究法:依据现有的科学理论和实践的需要提出设计。

定性分析法:对研究对象进行“质”的方面的研究,这个方法需要计算的数据较少。

定量分析法:通过具体的数字,使人们对研究对象的认识进一步精确化。

跨学科研究法:运用多学科的理论、方法和成果从整体上对某一课题进行研究。

功能分析法:这是社会科学用来分析社会现象的一种方法,从某一功能出发研究多个方面的影响。

模拟法:通过创设一个与原型相似的模型来间接研究原型某种特性的一种形容方法。

三、干旱地区生态环境劣化的经济损失计算方法初探(论文提纲范文)

(1)水资源短缺地区河道生态基流的计算方法及保障补偿机制研究 ——以渭河干流宝鸡段为例(论文提纲范文)

摘要
abstract
1. 绪论
    1.1. 研究背景与意义
        1.1.1. 研究背景
        1.1.2. 研究意义
    1.2. 国内外研究进展
        1.2.1. 河道生态基流定义
        1.2.2. 河道生态基流计算方法
        1.2.3. 河道生态基流价值
        1.2.4. 河道生态基流保障的补偿机制
        1.2.5. 河道生态基流管理
    1.3. 存在的主要问题
    1.4. 研究内容
    1.5. 研究技术路线
2. 研究区状况
    2.1. 研究区域
    2.2. 基础数据
        2.2.1. 区域水资源量
        2.2.2. 气候状况
        2.2.3. 河流泥沙
        2.2.4. 社会经济
        2.2.5. 行业用水
        2.2.6. 土地利用
        2.2.7. 水环境及生物多样性
    2.3. 宝鸡峡塬上灌区概况
    2.4. 研究区域存在的主要问题
3. 基于河流生态保护目标的耦合生态流速的生态基流计算方法
    3.1. 河流生态保护目标选择
    3.2. 河道生态基流计算方法
        3.2.1. 维持水沙平衡的生态流速
        3.2.2. 水生生物多样性保护的生态流速
        3.2.3. 满足水质标准的生态流速
        3.2.4. 河道生态基流计算方法
    3.3. 渭河干流宝鸡段河道生态基流
        3.3.1. 维持水沙平衡的生态流速
        3.3.2. 水生生物多样性保护的生态流速
        3.3.3. 满足水质标准的生态流速
        3.3.4. 渭河干流宝鸡段河流生态流速
        3.3.5. 渭河干流宝鸡段河流生态基流
        3.3.6. 结果合理性分析
        3.3.7. 河流生态基流保障现状评价
    3.4. 河道生态基流计算方法讨论
    3.5. 本章小结
4. 基于价值最大和可接受损失保障目标的河道生态基流计算方法
    4.1. 河道生态基流价值计算方法
        4.1.1. 河流系统服务功能划分
        4.1.2. 河道生态基流价值计算方法
        4.1.3. 渭河干流宝鸡段河道生态基流价值
    4.2. 不同类型经济用水效益计算方法
        4.2.1. 工业用水效益
        4.2.2. 农业灌溉用水效益
        4.2.3. 其他经济用水效益
        4.2.4. 不同经济用水的总效益
    4.3. 基于河流系统服务功能总价值最大目标的河道生态基流计算方法
        4.3.1. 河流系统服务功能总价值
        4.3.2. 河道生态基流计算方法
        4.3.3. 渭河干流宝鸡段的河道生态基流
    4.4. 基于水资源决策者可接受经济损失概率目标的生态基流计算方法
        4.4.1. 优先保障河道生态基流的农业经济损失评估
        4.4.2. 基于水资源决策者可接受经济损失概率目标的生态基流计算方法
        4.4.3. 渭河干流宝鸡段河道生态基流
    4.5. 基于生态基流边际效益最大化目标的生态基流计算方法
        4.5.1. 河道生态基流计算方法
        4.5.2. 渭河干流宝鸡段河流生态基流及其价值的拟合曲线
        4.5.3. 农业灌溉用水效益与农业灌溉用水的拟合曲线
        4.5.4. 渭河干流宝鸡段河道生态基流
    4.6. 四种方法计算结果对比分析
    4.7. 本章小结
5. 河道生态基流保障的农业补偿量计算模型
    5.1. 适宜河道生态基流确定方法
        5.1.1. 适宜河道生态基流确定方法
        5.1.2. 渭河干流宝鸡段适宜河道生态基流
    5.2. 河道生态基流保障的农业补偿量计算模型
        5.2.1. 计算模型理论基础分析
        5.2.2. 河道生态基流保障的农业生态补偿量计算模型
    5.3. 渭河干流宝鸡段基流保障的农业补偿量
        5.3.1. 基于成本投入的农业补偿量
        5.3.2. 基于河道生态基流价值增量的补偿量
    5.4. 本章小结
6. 河道生态基流保障的农业生态补偿机制
    6.1. 河道生态基流保障的补偿主、客体界定原则
        6.1.1. 补偿主、客体界定原则
        6.1.2. 渭河干流宝鸡段基流保障的补偿主体分析
        6.1.3. 渭河干流宝鸡段基流保障的补偿客体分析
    6.2. 河道生态基流保障的最佳补偿方案
        6.2.1. 生态补偿途径的划分
        6.2.2. 基于生态补偿途径的补偿量计算模型
        6.2.3. 河道生态基流保障的最佳补偿方案
        6.2.4. 渭河干流宝鸡段多种生态补偿方案
    6.3. 河道生态基流保障补偿主体的资金分担量计算方法
        6.3.1. 不同层次资金分担量计算模型建立原则
        6.3.2. 河道生态基流价值
        6.3.3. 河道生态基流保障补偿主体的资金分担系数
        6.3.4. 补偿主体的资金分担量计算模型
    6.4. 渭河干流宝鸡段补偿主体的资金分担量
        6.4.1. 河流生态基流服务功能影响范围界定
        6.4.2. 补偿主体的资金分担系数
        6.4.3. 补偿主体的资金分担量
    6.5. 本章小结
7. 结论与展望
    7.1. 结论
    7.2. 创新点
    7.3. 展望
致谢
参考文献
攻读博士学位期间主要研究成果

(2)季冻区分散性土特性与破坏机理研究(论文提纲范文)

摘要
ABSTRACT
第一章 绪论
    1.1 分散性土分布及破坏现象
    1.2 分散性土研究现状
        1.2.1 分散性土基本性质
        1.2.2 分散性土工程破坏治理
        1.2.3 季冻区分散性土研究不足
    1.3 论文的主要研究内容与技术路线
        1.3.1 主要研究内容
        1.3.2 技术路线
第二章 季冻区分散性土破坏形式与影响因素
    2.1 引言
    2.2 研究区分散性土分布、分散机理与成因
        2.2.1 研究区分散性土分布与分散机理
        2.2.2 分散性土成因
    2.3 季冻区分散性土破坏形式
        2.3.1 冲蚀破坏和管涌破坏
        2.3.2 冻融循环破坏
        2.3.3 冻融-浸泡变形破坏
        2.3.4 滑坡失稳破坏
    2.4 季冻区分散性土破坏影响因素
    2.5 本章小结
第三章 季冻区分散性土冻融循环特性及破坏成因
    3.1 引言
    3.2 分散性土理化性质与分散性
        3.2.1 矿物成分分析
        3.2.2 理化性质
        3.2.3 分散性鉴定
    3.3 冻融循环下分散性土水热特性分析
        3.3.1 冻结温度和融化温度
        3.3.2 冻融循环试验
        3.3.3 含水率重分布特征
        3.3.4 温度重分布特性
    3.4 季冻区分散性土冻融循环变形规律
        3.4.1 分散性土冻融循环变形规律
        3.4.2 与非分散性土冻融循环变形规律差异
    3.5 季冻区分散性土冻融循环破坏成因分析
    3.6 本章小结
第四章 季冻区分散性土冻融-浸泡变形特性及破坏机理
    4.1 引言
    4.2 分散性土冻融-浸泡下土体状态变化
    4.3 分散性土冻融-浸泡变形特性
        4.3.1 冻融-浸泡试验设计
        4.3.2 分散性土冻融-浸泡下的变形特性
        4.3.3 与非分散性土冻融-浸泡变形特性差异
        4.3.4 分散性土冻融-浸泡压缩变形预测方法
    4.4 分散性土冻融-浸泡变形破坏机理
    4.5 本章小结
第五章 季冻区分散性土边坡滑坡失稳特性及诱发机制
    5.1 引言
    5.2 季冻区分散性土滑坡失稳类型与影响因素
    5.3 季冻区环境下分散性土抗剪强度特性
        5.3.1 抗剪强度试验设计
        5.3.2 冻融和浸泡对抗剪强度的影响
        5.3.3 含水率和干密度对抗剪强度的影响
    5.4 分散性土滑坡失稳过程分析
        5.4.1 典型滑坡抗滑稳定性计算
        5.4.2 滑坡失稳过程分析
    5.5 季冻区分散性土滑坡失稳诱发机制
    5.6 本章小结
第六章 结论与展望
    6.1 论文的主要工作及研究成果
    6.2 研究展望
参考文献
致谢
作者简介
攻读博士期间发表的文章
攻读博士期间参与的科研项目

(3)综合干旱指数构建及其适用性研究 ——以黑河流域中上游为例(论文提纲范文)

摘要
ABSTRACT
第一章 绪论
    1.1 研究背景及意义
    1.2 国内外研究进展
        1.2.1 干旱的定义及分类
        1.2.2 单类型干旱指数研究进展
        1.2.3 综合干旱指数研究进展
    1.3 存在的问题
    1.4 研究内容与技术路线
        1.4.1 研究内容
        1.4.2 技术路线
第二章 研究区概况及研究方法
    2.1 研究区概况
        2.1.1 地理位置
        2.1.2 地形地貌
        2.1.3 气候特征
        2.1.4 水文特征
    2.2 研究方法
        2.2.1 单类型干旱指数计算方法
        2.2.2 综合干旱指数构建方法
        2.2.3 干旱特征分析及验证方法
        2.2.4 干旱等级的划分方法
    2.3 数据来源
        2.3.1 气象数据
        2.3.2 农业数据
        2.3.3 水文数据
    2.4 本章小结
第三章 黑河流域中上游单类型干旱的时空演变特征
    3.1 气象干旱时空演变特征
        3.1.1 气象干旱趋势演变分析
        3.1.2 气象干旱周期演变分析
        3.1.3 气象干旱年代演变分析
        3.1.4 气象干旱空间演变分析
    3.2 农业干旱时空演变特征
        3.2.1 农业干旱趋势演变分析
        3.2.2 农业干旱周期演变分析
        3.2.3 农业干旱年代演变分析
        3.2.4 农业干旱空间演变分析
    3.3 水文干旱时空演变特征
        3.3.1 水文干旱趋势演变分析
        3.3.2 水文干旱周期演变分析
        3.3.3 水文干旱年代演变分析
        3.3.4 水文干旱空间演变分析
    3.4 本章小结
第四章 综合干旱指数(SMDI)的构建及其适用性分析
    4.1 综合干旱指数的构建
        4.1.1 基于熵权法的综合干旱指数SMDI_ew
        4.1.2 基于PCA法的综合干旱指数SMDI_pca
        4.1.3 基于Copula函数法的综合干旱指数SMDI_cop
        4.1.4 基于PCA-Copula函数法的综合干旱指数SMDI_pcacop
        4.1.5 基于KECA法的综合干旱指数SMDI_keca
    4.2 综合干旱指数的比较
    4.3 综合干旱指数与单类型干旱指数的相关性分析
    4.4 综合干旱指数的验证
    4.5 本章小结
第五章 黑河流域中上游综合干旱的时空演变特征
    5.1 综合干旱周期演变分析
    5.2 综合干旱年代演变分析
    5.3 综合干旱空间演变分析
    5.4 本章小结
第六章 结论与展望
    6.1 结论
    6.2 不足和展望
参考文献
致谢
个人简历

(4)中亚夏季极端降水变化的多尺度特征及影响机理(论文提纲范文)

摘要
ABSTRACT
第一章 绪论
    1.1 研究背景及意义
    1.2 中亚地区极端降水研究进展
        1.2.1 极端降水事件的定义和研究方法
        1.2.2 中亚地区极端降水变化特征研究
        1.2.3 中亚地区极端降水成因研究
    1.3 问题的提出
    1.4 研究内容和技术路线
        1.4.1 主要研究内容
        1.4.2 技术路线
第二章 研究区域及资料方法介绍
    2.1 研究区域概况
        2.1.1 地形地貌
        2.1.2 气候特征
    2.2 资料说明
        2.2.1 降水资料
        2.2.2 环流和海温资料
        2.2.3 其他资料
    2.3 方法介绍
        2.3.1 极端降水指数定义
        2.3.2 统计方法
        2.3.3 诊断方法
        2.3.4 天气尺度瞬变波计算方法
        2.3.5 局地多尺度能量涡度诊断方法
        2.3.6 水汽追踪
        2.3.7 CAM模式和试验介绍
        2.3.8 WRF模式和试验介绍
第三章 中亚夏季极端降水的变化规律
    3.1 中亚夏季降水和极端降水的气候特征
        3.1.1 夏季降水和极端降水的时空分布特征
        3.1.2 夏季降水和极端降水的周期特征
    3.2 中亚夏季降水和极端降水的变化特征
        3.2.1 夏季降水和极端降水的空间变化特征
        3.2.2 夏季降水和极端降水的时间变化特征
    3.3 中亚不同分区夏季降水和极端降水的变化特征
        3.3.1 中亚东部夏季极端降水的变化特征
        3.3.2 中亚气候分区
        3.3.3 中亚子区域夏季降水和极端降水变化特征
    3.4 本章小结
第四章 影响中亚夏季极端降水年际和年代际异常的大尺度环流
    4.1 影响中亚夏季极端降水年际异常的环流特征
        4.1.1 中亚夏季环流特征
        4.1.2 中亚夏季极端降水年际异常的环流特征
        4.1.3 NAO对中亚夏季极端降水年际异常的影响
        4.1.4 EA/WR对中亚夏季极端降水年际异常的影响
    4.2 影响中亚夏季极端降水年代际异常的环流特征
    4.3 水汽对中亚夏季极端降水的影响
        4.3.1 水汽输送的影响
        4.3.2 水汽收支的影响
    4.4 本章小结
第五章 天气尺度瞬变扰动对中亚夏季极端降水的影响
    5.1 瞬变波对中亚夏季极端降水的影响
    5.2 中小尺度涡旋对中亚夏季极端降水的影响
    5.3 不同尺度环流耦合对中亚夏季极端降水的影响
    5.4 本章小结
第六章 海温和海冰对中亚夏季极端降水的影响及数值模拟
    6.1 北大西洋海温对中亚夏季极端降水的影响
        6.1.1 影响中亚夏季极端降水的北大西洋海温模态
        6.1.2 北大西洋高纬海温对中亚夏季极端降水的影响及模拟
        6.1.3 北大西洋中低纬海温对中亚夏季极端降水的影响及模拟
    6.2 巴伦支海春季海冰对中亚夏季极端降水的影响
        6.2.1 巴伦支海春季海冰对夏季海温和海冰的影响
        6.2.2 巴伦支海春季海冰对中亚夏季极端降水的影响及模拟
    6.3 多尺度耦合对中亚夏季极端降水的影响
        6.3.1 多尺度耦合影响的模拟试验
        6.3.2 影响中亚夏季极端降水增加的耦合机制
    6.4 本章小结
第七章 总结与展望
    7.1 主要结论
    7.2 创新点
    7.3 不足与未来工作展望
参考文献
致谢
作者简介

(5)酸性大气环境下RC框架剪力墙结构抗震性能与地震韧性评估(论文提纲范文)

摘要
ABSTRACT
1 绪论
    1.1 研究背景与研究意义
    1.2 国内外研究现状
        1.2.1 RC建筑材料酸腐蚀机理与力学性能退化规律研究
        1.2.2 腐蚀RC构件力学与抗震性能试验及数值模拟研究
        1.2.3 建筑结构地震韧性评估研究
    1.3 本文主要研究内容
        1.3.1 研究思路
        1.3.2 研究内容
2 酸性大气环境下RC剪力墙抗震性能试验研究
    2.1 试验方案
        2.1.1 RC剪力墙设计
        2.1.2 材料力学性能
        2.1.3 加速腐蚀试验方案
        2.1.4 加载装置与制度
    2.2 试验现象与破坏过程
        2.2.1 腐蚀现象与量化
        2.2.2 破坏过程与滞回曲线
    2.3 试验结果与分析
        2.3.1 骨架曲线
        2.3.2 承载能力
        2.3.3 变形能力
        2.3.4 剪切变形
        2.3.5 强度衰减
        2.3.6 刚度退化
        2.3.7 滞回耗能
    2.4 本章小结
3 酸性大气环境下RC剪力墙数值模型研究
    3.1 考虑弯剪耦合的剪力墙模拟方法
        3.1.1 模型基本假定
        3.1.2 二维RC板单元本构关系
        3.1.3 整体刚度矩阵
        3.1.4 本文建模思路
    3.2 腐蚀混凝土本构修正
        3.2.1 腹板非约束混凝土
        3.2.2 边缘构件约束混凝土
    3.3 锈蚀钢筋本构修正
    3.4 抗剪机制相应系数修正
    3.5 考虑腐蚀影响的粘结滑移效应模拟
        3.5.1 零长度单元中混凝土应变修正
        3.5.2 考虑腐蚀影响的钢筋滑移本构
    3.6 模型的建立与验证
    3.7 本章小结
4 腐蚀RC剪力墙破坏模式与抗剪承载力预测
    4.1 RC剪力墙破坏模式识别方法
        4.1.1 RC剪力墙破坏模式分类
        4.1.2 破坏模式识别方法对比
    4.2 基于机器学习的RC剪力墙破坏模式识别
        4.2.1 基于机器学习的分类算法
        4.2.2 机器学习数据集
        4.2.3 RC剪力墙破坏模式识别模型
    4.3 腐蚀RC剪力墙模拟试验数据库
        4.3.1 参数设置
        4.3.2 影响参数分析
    4.4 腐蚀RC剪力墙抗剪承载力预测
        4.4.1 未腐蚀RC剪力墙抗剪承载力计算公式
        4.4.2 不同破坏模式下抗剪承载力公式选择
        4.4.3 考虑腐蚀影响的抗剪承载力公式修正
    4.5 本章小结
5 腐蚀RC框剪结构构件时变地震易损性分析
    5.1 构件易损性分析方法对比
        5.1.1 基于历史震害的经验分析方法
        5.1.2 基于试验数据的统计分析方法
        5.1.3 基于数值模拟的理论分析方法
    5.2 腐蚀RC结构构件易损性分析
        5.2.1 酸性大气环境下材料腐蚀程度经时变化规律
        5.2.2 RC构件损伤破坏状态划分
        5.2.3 腐蚀RC构件工程需求参数的选取
    5.3 腐蚀RC剪力墙构件地震易损性曲线
        5.3.1 参数选取与模型设计
        5.3.2 DS-EDP结果对比分析
        5.3.3 不同服役期构件层间位移角分布
        5.3.4 不同服役期构件地震易损性曲线
    5.4 腐蚀RC梁柱构件地震易损性曲线
    5.5 本章小结
6 腐蚀RC框剪结构地震韧性评估
    6.1 腐蚀RC框剪结构地震韧性评估框架
        6.1.1 既有评估框架
        6.1.2 本文评估框架
    6.2 腐蚀RC框剪结构地震反应分析
        6.2.1 典型结构平面布置形式
        6.2.2 典型结构设计
        6.2.3 典型结构数值模型的建立
        6.2.4 增量动力时程分析
    6.3 腐蚀RC框剪结构地震损失分析
        6.3.1 损失评估方法
        6.3.2 易损构件的选取与数量估计
        6.3.3 构件易损性模型与修复费用比
        6.3.4 不同参数下建筑损失分析结果
    6.4 腐蚀RC框剪结构震损恢复分析
        6.4.1 修复准备时间
        6.4.2 修复策略制定
        6.4.3 修复时间计算方法
        6.4.4 不同参数下建筑恢复时间计算结果
    6.5 腐蚀RC框剪结构地震韧性评估
        6.5.1 功能-时间曲线的建立
        6.5.2 不同服役期与层数的RC框剪结构地震韧性评估
    6.6 本章小结
7 结论与展望
    7.1 主要研究结论
    7.2 研究展望
参考文献
致谢
附录
    附录一: RC剪力墙构件机器学习数据集
    附录二: 发表学术论文情况
    附录三: 发表专着情况
    附录四: 授权发明专利
    附录五: 参加的科研项目
    附录六: 获奖情况

(6)风积沙粉体混凝土耐久性能及服役寿命预测模型研究(论文提纲范文)

摘要
Abstract
缩略语表
1 引言
    1.1 研究背景、目的和意义
        1.1.1 研究背景
        1.1.2 研究目的
        1.1.3 研究意义
    1.2 国内外研究现状
        1.2.1 风积沙理化性质及应用研究现状
        1.2.1.1 风积沙理化性质研究现状
        1.2.1.2 风积沙应用研究现状
        1.2.2 粉体材料研究现状
        1.2.3 “碱激发”胶凝材料研究现状
        1.2.4 混凝土耐久性损伤失效研究现状
        1.2.4.1 碳化作用导致混凝土失效研究现状
        1.2.4.2 冻融作用导致混凝土失效研究现状
        1.2.4.3 硫酸盐侵蚀作用导致混凝土失效研究现状
        1.2.4.4 多因素耦合作用导致混凝土失效研究现状
        1.2.4.5 混凝土服役寿命预测模型研究现状
    1.3 研究内容及技术路线
        1.3.1 研究内容
        1.3.2 技术路线
    1.4 本章小结
2 原材料检测、配合比设计、试件制备及试验方法简介
    2.1 原材料性能检测
    2.2 配合比设计
        2.2.1 风积沙粉体—水泥胶凝体系配合比设计
        2.2.2 风积沙粉体混凝土配合比设计
    2.3 试件成型、养护、基本物理力学性能及微观特性测试方法
        2.3.1 试件成型与养护
        2.3.2 基本物理力学性能
        2.3.3 微观特性测试
    2.4 试验方法简介
        2.4.1 风积沙粉体活性及碱激发改性研究
        2.4.2 风积沙粉体混凝土抗冻性试验方法
        2.4.3 风积沙粉体混凝土碳化试验方法
        2.4.4 风积沙粉体混凝土抗硫酸盐侵蚀试验方法
        2.4.5 风积沙粉体混凝土抗风沙冲蚀试验方法
    2.5 本章小结
3 风积沙粉体活性及碱激发改性研究
    3.1 宏观试验结果及分析
        3.1.1 风积沙粉体活性试验结果及分析
        3.1.2 碱激发改性风积沙粉体试验结果及分析
    3.2 微观试验结果及分析
        3.2.1 XRD试验结果及分析
        3.2.2 场发射扫描电镜试验结果及分析
        3.2.3 核磁共振试验结果及分析
    3.3 本章小结
4 冻融、盐浸环境下风积沙粉体混凝土劣化机理研究
    4.1 试验工况简介
    4.2 宏观试验结果与分析
        4.2.1 力学性能试验结果及分析
        4.2.2 冻融循环试验结果及分析
    4.3 微观试验结果与分析
        4.3.1 核磁共振试验结果及分析
        4.3.2 能谱、场发射扫描电镜试验结果及分析
    4.4 本章小结
5 冻融、干湿环境下风积沙粉体混凝土劣化机理研究
    5.1 耦合工况简介
    5.2 宏观试验结果及分析
        5.2.1 单一冻融或干湿环境下试验结果及分析
        5.2.2 冻融—干湿环境下试验结果及分析
        5.2.3 干湿—冻融环境下试验结果及分析
    5.3 冻融、干湿环境下微观试验结果及分析
        5.3.1 核磁共振试验结果及分析
        5.3.2 场发射扫描电镜、XRD试验结果及分析
    5.4 本章小结
6 风沙冲蚀、碳化环境下风积沙粉体混凝土劣化机理研究
    6.1 耦合工况简介
    6.2 宏观试验结果及分析
        6.2.1 力学性能试验结果及分析
        6.2.2 风沙冲蚀—碳化试验结果及分析
        6.2.3 碳化—风沙冲蚀试验结果及分析
    6.3 风沙冲蚀、碳化微观试验结果及分析
    6.4 本章小结
7 冻融、碳化环境下风积沙粉体混凝土劣化机理研究
    7.1 耦合工况简介
    7.2 冻融、碳化环境下宏观试验结果及分析
        7.2.1 相对动弹性模量变化规律及机理分析
        7.2.2 碳化深度变化规律及机理分析
    7.3 冻融、碳化环境下微观试验结果及分析
        7.3.1 场发射扫描电镜、XRD试验结果及分析
        7.3.2 核磁共振试验结果及分析
    7.4 本章小结
8 复杂环境下风积沙粉体混凝土孔隙特征研究
    8.1 灰色关联度分析概述
    8.2 风积沙粉体混凝土孔隙演变规律研究
    8.3 本章小结
9 风积沙粉体混凝土服役寿命预测模型
    9.1 基于碳化的风积沙粉体混凝土服役寿命灰色预测模型
        9.1.1 灰色系统理论
        9.1.2 基于碳化方程的混凝土服役寿命预测模型细述
        9.1.3 基于碳化的风积沙粉体混凝土服役寿命灰色预测模型
    9.2 基于硫酸盐侵蚀的风积沙粉体混凝土服役寿命预测模型
    9.3 本章小结
10 结论、创新点及展望
    10.1 结论
    10.2 创新点
    10.3 展望
致谢
参考文献
作者简介

(7)改进的工程结构全寿命设计理论及全寿命成本模型(论文提纲范文)

致谢
摘要
ABSTRACT
第1章 绪论
    1.1 研究背景与意义
    1.2 研究现状
    1.3 目前研究中存在的问题
    1.4 本文主要研究工作
    参考文献
第2章 工程结构的全寿命设计理论框架和目标体系
    2.1 引言
    2.2 工程结构设计方法和设计理论的演化
    2.3 工程结构全寿命设计理论
    2.4 本章小结
    参考文献
第3章 工程结构全寿命绿色评价体系及绿色建造分析
    3.1 引言
    3.2 工程结构全寿命绿色评价指标的构建
    3.3 工程结构全寿命绿色评价指标的内涵
    3.4 案例分析与应用
    3.5 本章小结
    参考文献
第4章 劣化钢筋混凝土结构的全寿命分层设计法
    4.1 引言
    4.2 全寿命设计目标体系
    4.3 全寿命分层设计法
    4.4 案例分析
    4.5 传统结构设计法与全寿命分层设计法的对比
    4.6 本章小结
    参考文献
第5章 改进的工程结构全寿命设计理论框架
    5.1 引言
    5.2 改进的的工程结构全寿命设计理论指标体系
    5.3 结构耐久性对安全性、适用性的影响
    5.4 结构的极限状态与使用寿命
    5.5 全寿命环境指标、社会指标与全寿命成本的关系
    5.6 结构耐久性对可持续发展指标的影响
    5.7 新旧全寿命设计理论体系的比较
    5.8 本章小节
    参考文献
第6章 工程结构的全寿命环境影响与环境成本
    6.1 引言
    6.2 工程结构的环境成本模型
    6.3 包含环境成本的初始成本及结构选型
    6.4 包含环境成本的桥梁梁构件全寿命成本分析
    6.5 环境成本折现率
    6.6 本章小结
    参考文献
第7章 工程结构的全寿命社会影响与社会成本
    7.1 引言
    7.2 工程结构的社会影响类别和社会成本
    7.3 包含社会成本的全寿命成本模型
    7.4 案例分析:包含社会成本的全寿命成本分析
    7.5 本章小结
    参考文献
第8章 基于可持续性的全寿命总成本模型及工程决策
    8.1 引言
    8.2 结构全寿命总成本模型及全寿命总成本计算软件
    8.3 宁波市某桥梁工程实例
    8.4 本章小结
    参考文献
第9章 结论与展望
    9.1 主要研究成果
    9.2 主要创新点
    9.3 研究展望
作者简历及在学期间所取得的科研成果

(8)西北地区干旱灾害时空统计规律与风险管理研究(论文提纲范文)

摘要 Abstract 第1章 绪论
1.1 选题背景与研究意义
1.2 研究进展
    1.2.1 气候变化研究进展
    1.2.2 气象灾害研究进展
    1.2.3 干旱灾害研究进展
    1.2.4 灾害风险管理研究
    1.2.5 灾害预测与趋势判断
1.3 研究区域概况
    1.3.1 地理位置与范围
    1.3.2 气候特点与区划
1.4 研究目标与研究内容
    1.4.1 研究目标
    1.4.2 研究内容
1.5 研究方法与技术路线
    1.5.1 研究方法
    1.5.2 技术路线 第2章 西北地区气候变化背景分析
2.1 数据来源与研究方法
    2.1.1 数据来源
    2.1.2 研究方法
2.2 西北地区气温时空演变
    2.2.1 平均气温年际变化趋势
    2.2.2 平均气温季节变化趋势
    2.2.3 平均气温年内分布特征
2.3 西北地区降水量时空演变
    2.3.1 平均降水量年际变化趋势
    2.3.2 平均降水量季节变化趋势
    2.3.3 平均降水量年内分布特征
    2.3.4 降水日数的变化趋势
2.4 西北地区平均风速时空演变
    2.4.1 平均风速年际变化趋势
    2.4.2 平均风速季节变化趋势
    2.4.3 平均风速年内分布特征
2.5 西北地区日照时数时空演变
    2.5.1 日照时数年际变化趋势
    2.5.2 日照时数季节变化趋势
    2.5.3 日照时数年内分布特征
2.6 西北地区相对湿度时空演变
    2.6.1 相对湿度年际变化趋势
    2.6.2 相对湿度季节变化趋势
    2.6.3 相对湿度年内分布特征
2.7 小结 第3章 西北地区干旱灾害时空规律
3.1 SPEI干旱指数方法
    3.1.1 SPI和SPEI指数的异同
    3.1.2 SPEI指数的算法改进
    3.1.3 基于SPEI指数的干旱评价体系
3.2 西北地区SPEI与SPI旱涝事件分析
3.3 西北地区不同时间尺度干旱时间演变
    3.3.1 西北地区不同时间尺度SPEI
    3.3.2 不同气候分区SPEI-12时间演变
3.4 西北地区季节及年尺度干旱时空演变
    3.4.1 时间变化趋势
    3.4.2 空间变化趋势
    3.4.3 频率变化特征
3.5 西北地区干旱强度时间变化分析
    3.5.1 年尺度干旱强度
    3.5.2 季节尺度干旱强度
3.6 西北地区干旱覆盖度统计分析
    3.6.1 全区及分区干旱覆盖度统计分析
    3.6.2 各省份干旱覆盖度统计分析
    3.6.3 西北地区干旱覆盖度的阶段变化分析
3.7 小结 第4章 西北地区干旱灾害趋势判断
4.1 重大自然灾害的趋势判断模型
    4.1.1 可公度等式计算
    4.1.2 可公度蝴蝶结构图
    4.1.3 可公度结构系
    4.1.4 西北地区干旱趋势判断
4.2 西北地区站点尺度轻旱与中旱趋势判断
    4.2.1 新疆北塔山站年尺度旱灾趋势判断
    4.2.2 新疆北塔山站秋季旱灾趋势判断
    4.2.3 青海门源站年尺度旱灾趋势判断
    4.2.4 青海门源站夏季旱灾趋势判断
    4.2.5 内蒙古四子王旗站年尺度旱灾趋势判断
    4.2.6 内蒙古四子王旗站冬季旱灾趋势判断
    4.2.7 甘肃张掖站春季旱灾趋势判断
    4.2.8 甘肃张掖站秋季旱灾趋势判断
    4.2.9 陕西镇安站春季旱灾趋势判断
    4.2.10 陕西镇安站夏季旱灾趋势判断
    4.2.11 宁夏中宁站春季旱灾趋势判断
    4.2.12 宁夏中宁站夏季旱灾趋势判断
4.3 西北地区及各分区旱灾趋势判断
    4.3.1 西北地区年尺度中度以上旱灾趋势判断
    4.3.2 西风气候区春季中度以上旱灾趋势判断
    4.3.3 高原气候区年尺度重旱灾害趋势判断
    4.3.4 东南气候区年尺度中度以上旱灾趋势判断
4.4 西北地区省级尺度旱灾趋势判断
    4.4.1 青海年尺度中度以上旱灾趋势判断
    4.4.2 宁夏年尺度中度以上旱灾趋势判断
    4.4.3 陕西年尺度中度以上旱灾趋势判断
    4.4.4 内蒙西部年尺度重度以上旱灾趋势判断
    4.4.5 新疆年尺度重度旱灾趋势判断
    4.4.6 甘肃年尺度重度旱灾趋势判断
4.5 小结 第5章 西北地区干旱灾害归因分析
5.1 干旱指数的多元线性回归法
    5.1.1 气候变化的归因分析
    5.1.2 多元线性回归原理
    5.1.3 气象要素的多重共线性
    5.1.4 干旱灾害的多元线性归因分析
5.2 多元线性回归模型的拟合评判
    5.2.1 模型决定系数的统计分析
    5.2.2 拟合与观测值一致性分析
5.3 西北地区干旱演变归因分析
    5.3.1 回归系数与贡献率的空间分布
    5.3.2 回归系数与贡献率的分区统计
    5.3.3 干旱归因分析的主导因子识别
5.4 小结 第6章 西北地区干旱灾害风险评价、区划与管理
6.1 自然灾害系统论
6.2 干旱灾害风险评价指标体系与模型构建
    6.2.1 干旱灾害风险模型
    6.2.2 干旱灾害风险评价指标体系
    6.2.3 干旱灾害风险评价流程
6.3 西北地区干旱灾害系统分析
    6.3.1 数据采集与处理
    6.3.2 致灾因子综合分析
    6.3.3 孕灾环境综合分析
    6.3.4 承灾体的综合分析
    6.3.5 防灾减灾能力分析
6.4 西北干旱灾害风险评价
    6.4.1 致灾因子危险性
    6.4.2 孕灾环境脆弱性
    6.4.3 承灾体暴露性
    6.4.4 防灾减灾能力
    6.4.5 旱灾综合风险评价
6.5 西北地区干旱灾害风险管理与对策研究
    6.5.1 灾害管理与风险管理
    6.5.2 气象灾害管理
    6.5.3 干旱灾害风险管理与对策
6.6 小结 第7章 结论与展望
7.1 主要结论
    7.1.1 西北地区的气候变化特征
    7.1.2 西北地区的干旱变化特征
    7.1.3 西北地区的干旱灾害趋势判断
    7.1.4 西北地区的干旱归因分析
    7.1.5 西北地区的干旱风险评价
7.2 创新点
7.3 后续研究展望 参考文献 致谢 攻读博士学位期间科研成果

(9)应对气候变化的滨海城市空间结构适应模式研究 ——以厦门为例(论文提纲范文)

中文摘要
ABSTRACT
第1章 绪论
    1.1 研究背景
        1.1.1 应对气候变化危机的全球背景
        1.1.2 适应城镇化与转型发展的经济背景
        1.1.3 调节生态系统平衡的环境背景
        1.1.4 建立城市防灾减灾措施的社会背景
    1.2 研究目的与意义
        1.2.1 研究目的
        1.2.2 研究意义
    1.3 研究概念界定与范畴
        1.3.1 应对气候变化
        1.3.2 城市空间结构
        1.3.3 适应
        1.3.4 研究范畴界定
    1.4 研究内容、方法与框架
        1.4.1 研究内容
        1.4.2 研究方法
        1.4.3 研究框架
    1.5 小结
第2章 国内外相关研究综述
    2.1 气候变化问题发展历程
        2.1.1 全球气候变化问题发展历程
        2.1.2 我国应对气候变化发展战略
    2.2 城市气候变化事实相关研究
        2.2.1 城市气候变化特征研究
        2.2.2 城市气候变化影响研究
    2.3 城市应对气候变化相关研究
        2.3.1 减缓气候变化研究
        2.3.2 应对极端气候研究
        2.3.3 适应气候变化研究
    2.4 应对气候变化的城市空间结构相关研究
        2.4.1 城市空间结构与气候变化关系研究
        2.4.2 城市空间结构应对气候变化策略研究
        2.4.3 城市空间结构适应气候变化规划研究
    2.5 小结
        2.5.1 综合评价
        2.5.2 研究展望
第3章 应对气候变化的城市空间结构适应理论方法与概念模型
    3.1 理论方法基础
        3.1.1 可持续发展理论
        3.1.2 系统耦合理论
        3.1.3 状态空间理论
        3.1.4 复杂系统理论
    3.2 城市适应气候变化核心测度
        3.2.1 城市气候承载力概念提出
        3.2.2 城市气候承载力概念内涵
        3.2.3 城市气候承载力概念意义
        3.2.4 城市气候承载力系统特征
        3.2.5 城市气候承载力结构模型
    3.3 应对气候变化的城市空间结构适应概念模型
        3.3.1 模型构建原则
        3.3.2 概念模型构建
        3.3.3 概念模型结构输入要素
        3.3.4 概念模型模式输出要素
    3.4 应对气候变化的城市空间结构适应模块设计
        3.4.1 情景模块:滨海城市气候变化事实和情景预测模块
        3.4.2 关系模块:滨海城市气候变化与空间结构关系模块
        3.4.3 管控模块:滨海城市气象灾害风险评测与空间区划模块
        3.4.4 承载模块:滨海城市气候承载力评测与空间区划模块
        3.4.5 适应模块:应对气候变化的滨海城市空间结构适应模式模块
    3.5 小结
第4章 滨海城市气候变化与空间结构演变情景与关系
    4.1 滨海城市气候变化区域背景
        4.1.1 滨海城市区域概况
        4.1.2 滨海城市气候变化背景
    4.2 滨海城市气候变化情景与趋势
        4.2.1 滨海城市近50年气候变化特征
        4.2.2 滨海城市气候变化问题
    4.3 滨海城市空间结构演变特征
        4.3.1 海陆空间增长,外部形态变迁
        4.3.2 功能向海转移,内部结构重组
    4.4 滨海城市空间结构与气候变化胁迫
        4.4.1 填海造地围海化,城市热岛效应
        4.4.2 功能布局割裂化,城市雨岛效应
        4.4.3 内部空间工程化,城市干岛效应
        4.4.4 形态延展临海化,复合灾害效应
    4.5 气候变化对滨海城市空间发展风险
        4.5.1 气候变化加剧,滨海城市脆弱性凸显
        4.5.2 海平面持续上升,滨海城市威胁加剧
        4.5.3 气象灾害威胁,滨海城市安全危机
        4.5.4 海洋灾害频发,滨海海岸侵蚀加速
        4.5.5 气候环境恶化,滨海系统运行失衡
    4.6 滨海城市空间结构与气候变化影响
    4.7 实证研究:厦门气候变化与空间结构演变情景与关系
        4.7.1 厦门区域概况
        4.7.2 厦门近60年气候变化特征
        4.7.3 厦门城市空间结构演变
        4.7.4 厦门气候变化与空间结构胁迫与影响
    4.8 小结
第5章 外力适应—滨海城市气象灾害风险评测与空间区划
    5.1 我国滨海城市气象灾害风险特征
        5.1.1 台风灾害
        5.1.2 风暴潮灾害
        5.1.3 暴雨洪涝灾害
        5.1.4 海平面上升
    5.2 气象灾害风险区划方法
        5.2.1 气象灾害风险区划内涵
        5.2.2 气象灾害风险区划原则
        5.2.3 气象灾害风险区划数据与方法
        5.2.4 气象灾害风险区划的技术流程
    5.3 气象灾害风险区划模型构建
        5.3.1 气象灾害风险区划指标体系
        5.3.2 分灾种气象灾害风险区划模型构建
        5.3.3 综合气象灾害风险区划模型构建
    5.4 实证研究:厦门气象灾害风险区划
        5.4.1 台风灾害风险区划
        5.4.2 暴雨洪涝灾害风险区划
        5.4.3 大风灾害风险区划
        5.4.4 低温灾害风险区划
        5.4.5 高温灾害风险区划
        5.4.6 气象干旱灾害风险区划
        5.4.7 雷电灾害风险区划
        5.4.8 大雾灾害风险区划
        5.4.9 地质灾害风险区划
    5.5 小结
第6章 内力适应—滨海城市气候承载力评测与空间分布
    6.1 滨海城市气候承载力评价指标体系构建
        6.1.1 评价指标体系构建原则
        6.1.2 评价指标的选取
        6.1.3 评价指标体系结构框架
    6.2 滨海城市气候承载力评价模型构建
        6.2.1 状态空间法的基本原理与构建
        6.2.2 指标归类标准化与赋权
        6.2.3 城市气候承载力理论模型
        6.2.4 基于状态空间法的城市气候承载评价模型
        6.2.5 城市气候承载状态分级判定
    6.3 实证研究:厦门城市气候承载力评测与空间分布
        6.3.1 研究区域范围的界定
        6.3.2 评价指标原始数据的获取
        6.3.3 厦门城市气候承载力理想状态确定
        6.3.4 厦门城市气候承载力评价
        6.3.5 厦门城市气候承载力空间分布
        6.3.6 厦门城市空间适应优化的热点地区确定
    6.4 小结
第7章 应对气候变化的滨海城市空间结构适应模式
    7.1 城市空间结构应对气候变化的目标与原则
        7.1.1 城市空间结构应对气候变化的目标
        7.1.2 城市空间结构应对气候变化的原则
    7.2 基于复杂适应系统理论(CAS)的城市空间气候系统分析
        7.2.1 复杂适应系统理论(CAS)
        7.2.2 城市系统复杂适应性分析
        7.2.3 城市空间系统复杂适应性分析
        7.2.4 城市空间气候系统复杂适应性分析
    7.3 滨海城市空间结构气候适应模型
        7.3.1 滨海城市空间结构气候适应模型构成
        7.3.2 滨海城市空间结构气候适应模型需求
        7.3.3 滨海城市空间结构气候适应模型建构
        7.3.4 滨海城市空间结构气候适应模型组织策略
    7.4 应对气候变化的滨海城市空间结构适应模式
    7.5 实证研究——应对气候变化的厦门城市空间结构适应优化
        7.5.1 厦门城市空间气候适应区划判定
        7.5.2 厦门城市空间结构适应优化需求分析
        7.5.3 厦门城市空间结构适应优化建议
    7.6 小结
第8章 结论和讨论
    8.1 主要结论
    8.2 研究创新
    8.3 讨论
参考文献
发表论文与科研情况说明
致谢

(10)中国桥梁工程学术研究综述·2014(论文提纲范文)

0 引言
1 桥梁工程建设成就及展望 (同济大学肖汝诚老师、郭瑞、姜洋提供原稿)
    1.1 建设成就
        1.1.1 设计水平的提高
        1.1.2 施工技术的发展
        1.1.3 桥梁工程防灾和减灾技术的改进
    1.2 展望
        1.2.1 桥梁全寿命与结构耐久性设计
        1.2.2 高性能材料研发及其结构体系的创新[3]
        1.2.3 超深水基础建造技术
        1.2.4 创新施工装备和监测设备的研发
        1.2.5 桥梁设计理论和技术的发展
2 高性能材料
    2.1 超高性能混凝土 (湖南大学邵旭东老师、张哲博士生提供原稿)
        2.1.1 UHPC桥梁工程应用现状
        2.1.2 UHPC在大跨桥梁上的应用展望
        2.1.3 小结
    2.2 纤维复合材料 (江苏大学刘荣桂老师提供原稿)
        2.2.1 CFRP材料在预应力大跨桥梁结构中的应用
        2.2.1. 1 CFRP索 (筋) 锚具系统
        2.2.1. 2 CFRP材料作为受力筋
        2.2.1. 3 CFRP材料作为桥梁索结构
        2.2.2 CFRP材料在桥梁结构补强加固中的应用
        2.2.3 基于CFRP材料自感知特性的结构体系研发及应用现状
        2.2.4 CFRP材料现代预应力结构应用研究展望
    2.3 智能材料与纳米材料[49]
3 作用及分析
    3.1 汽车作用 (合肥工业大学任伟新老师、中南大学赵少杰博士生提供原稿)
        3.1.1 研究现状
        3.1.1. 1 研究方法及阶段
        3.1.1. 2 第1类模型
        3.1.1. 3 第2类模型
        3.1.2 各国规范的相关车辆荷载模型
        3.1.3 研究重点和难点
        3.1.4 研究发展方向
        3.1.4. 1 基于WIM系统和实时交通要素监测的车辆数据调查统计
        3.1.4. 2 基于多参数随机模拟技术的车辆荷载流模拟
        3.1.4. 3 基于交通流的桥梁结构效应及安全评估技术
        3.1.5 小结
    3.2 温度作用 (东南大学叶见曙老师提供原稿)
        3.2.1 混凝土箱梁的温度场和梯度温度
        3.2.1. 1 温度场
        3.2.1. 2 梯度温度
        (1) 沿箱梁高度的梯度温度分布形式
        (2) 最大温差值
        (3) 梯度温度的影响因素
        3.2.2 混凝土箱梁温差代表值
        3.2.3 混凝土箱梁温度场及温度应力的数值分析
        3.2.4 小结
    3.3 分析理论方法 (长安大学梁鹏老师提供原稿)
        3.3.1 单梁、空间梁格、空间网格建模
        3.3.2 非线性分析
        3.3.3 多尺度建模
4 桥梁设计理论与方法 (长安大学罗晓瑜、王春生老师, 同济大学陈艾荣老师提供原稿)
    4.1 桥梁及典型构件寿命的给定
        4.1.1 桥梁结构寿命给定
        4.1.2 国外桥梁及构件使用寿命
    4.2 桥梁性能设计
        4.2.1 安全性能设计
        4.2.2 使用性能设计
        4.2.3 耐久性能设计
        4.2.4 疲劳性能设计
        4.2.5 景观性能设计
        4.2.6 生态性能设计
        4.2.7 基于性能的桥梁结构设计方法
    4.3 寿命周期管养策略及设计
    4.4 寿命周期成本分析和决策
    4.5 桥梁工程风险评估和决策
    4.6 存在问题与建议
5 钢桥及组合结构桥梁
    5.1 钢桥抗疲劳设计与维护技术 (长安大学王春生老师提供原稿)
    5.2 钢-混凝土组合桥梁 (中南大学丁发兴老师, 清华大学樊健生老师, 同济大学刘玉擎、苏庆田老师提供原稿)
        5.2.1 研究现状
        5.2.1. 1 静力性能
        5.2.1. 1. 1 承载力
        (1) 钢-混凝土组合梁
        (2) 钢管混凝土柱
        (3) 钢管混凝土拱
        5.2.1. 1. 2 刚度
        5.2.1. 2 动力性能
        5.2.1. 2. 1 自振特性
        (1) 钢-混凝土组合梁桥
        (2) 钢管混凝土墩桥
        (3) 钢管混凝土拱桥
        5.2.1. 2. 2 车致振动
        5.2.1. 2. 3 风致振动
        5.2.1. 2. 4 地震响应
        (1) 钢-混凝土组合梁抗震性能
        (2) 钢管混凝土柱抗震性能
        (3) 钢管混凝土拱桥抗震性能
        5.2.1. 3 经时行为
        5.2.1. 3. 1 疲劳性能
        (1) 钢-混凝土组合梁
        (2) 钢管混凝土柱
        (3) 钢管混凝土节点
        5.2.1. 3. 2 收缩徐变性能
        (1) 钢-混凝土组合梁
        (2) 钢管混凝土柱
        (3) 钢管混凝土拱桥
        5.2.1. 3. 3 耐久性能
        5.2.1. 4 状态评估
        5.2.2 发展前景
        (1) 新型钢-混凝土组合桥梁结构体系研究与应用
        (2) 钢-混凝土组合桥梁结构体系经时行为研究
        (3) 钢-混凝土组合桥梁结构体系动力学研究
        (4) 钢-混凝土组合桥梁结构体系服役状态评估
6 桥梁防灾减灾
    6.1 抗震 (同济大学李建中老师、北京工业大学韩强老师提供原稿)
        6.1.1 桥梁混凝土材料损伤本构模型
        6.1.2 桥梁主要构件的抗震性能及分析模型
        6.1.2. 1 RC桥墩抗震性能及分析模型
        6.1.2. 2 桥梁剪力键抗震性能及分析模型
        6.1.3 桥梁结构抗震分析理论和设计方法
        6.1.3. 1 桥梁结构抗震设计理论和方法
        6.1.3. 2 桥梁结构多维地震动的空间差动效应
        6.1.3. 3 桥梁防落梁装置
        6.1.3. 4 桥梁地震碰撞反应
        6.1.3. 5 结构-介质相互作用
        6.1.3. 5. 1 土-桥台-桥梁结构相互作用
        6.1.3. 5. 2 近海桥梁-水相互作用
        6.1.4 桥梁减隔震技术
        6.1.5 桥梁结构易损性分析
        6.1.6 基于纤维增强材料的桥墩抗震加固技术
        6.1.7 存在的问题分析
    6.2 抗风 (长安大学李加武老师、西南交通大学李永乐老师提供原稿)
        6.2.1近地风特性研究
        6.2.1. 1 平坦地形风特性实验室模拟
        6.2.1. 2 特殊地形风特性
        (1) 现场实测
        (2) 风洞试验
        (3) CFD方法
        6.2.2 风致振动及风洞试验
        (1) 颤振
        (2) 涡激振动
        (3) 抖振
        (4) 驰振
        (5) 斜拉索风雨振
        6.2.3 临时结构抗风
        (1) 设计风速
        (2) 风力系数
        6.2.4 大跨桥风致振动的计算分析
        6.2.5 CFD分析
    6.3 抗火抗爆 (长安大学张岗老师提供原稿)
        6.3.1 研究现状与目标
        6.3.2 桥梁火灾风险评价
        6.3.3 适用于桥梁结构高性能材料的高温特性
        6.3.4 桥梁结构的火荷载特性
        6.3.5 桥梁结构的火灾作用效应
        6.3.6 火灾后桥梁结构的损伤评价
    6.4 船撞 (长安大学姜华老师提供原稿)
        6.4.1 船撞桥风险分析
        6.4.2 船撞桥数值模拟及碰撞试验校核
        6.4.3 撞击力公式及船撞桥简化模型
        6.4.4 桥梁防撞设施研究
    6.5 多场、多灾害耦合分析
        6.5.1 风-车-桥系统 (长安大学韩万水老师提供原稿)
        6.5.1. 1 研究回顾
        6.5.1. 2 未来发展方向
        6.5.1. 2. 1 风-随机车流-桥梁系统的气动干扰效应
        6.5.1. 2. 2 风-随机车流-桥梁系统的精细化分析
        (1) 风环境下汽车-桥梁系统耦合关系的建立和耦合机理研究
        (2) 钢桁加劲梁断面的风-汽车-桥梁分析系统建立
        (3) 风-随机车流-桥梁分析系统集成、动态可视化及软件实现
        6.5.1. 2. 3 风-随机车流-桥梁系统的评价准则
        6.5.2 多场、多灾害耦合分析与设计 (长安大学梁鹏老师提供原稿)
7 基础工程 (湖南大学赵明华老师、东南大学穆保岗老师提供原稿)
    7.1 桥梁桩基设计计算理论
        7.1.1 竖向荷载下桥梁桩基设计计算
        7.1.2 水平荷载下桥梁桩基设计计算
        7.1.3 组合荷载下桥梁桩基设计计算
    7.2 特殊条件下桥梁桩基受力研究
        7.2.1 软土地段桥梁桩基受力研究
        7.2.2 岩溶及采空区桥梁桩基受力研究
        7.2.3 陡坡地段桥梁桩基受力研究
        7.2.4 桥梁桩基动力分析
        7.2.5 高桥墩桩基屈曲分析
    7.3 桥梁桩基施工技术
        7.3.1 特殊混凝土材料桩
        7.3.2 大型钢管桩
        7.3.3 大型钢围堰与桩基复合基础
        7.3.4 钻孔灌注桩后压浆技术
        7.3.5 大吨位桥梁桩基静载试验技术
        7.3.6 偏斜缺陷桩
    7.4 深水桥梁桩基的发展动向
8 监测、评估及加固
    8.1 桥梁健康监测 (同济大学孙利民老师提供原稿)
        8.1.1 SHMS的设计
        8.1.2 数据获取
        8.1.2. 1 传感技术的发展
        8.1.2. 2 传输技术的发展
        8.1.3 数据管理
        8.1.4 数据分析
        8.1.4. 1 信号处理
        8.1.4. 2 荷载及环境作用监测
        8.1.4. 3 系统建模
        8.1.5 结构评估与预警
        8.1.6 结果可视化显示
        8.1.7 维修养护决策
        8.1.8 标准规范
        8.1.9 桥梁SHMS的应用
        8.1.1 0 存在问题与建议
    8.2 服役桥梁可靠性评估 (长沙理工大学张建仁、王磊老师, 长安大学王春生老师提供原稿)
        8.2.1 服役桥梁抗力衰减
        8.2.2 服役桥梁可靠性评估理论与方法
        8.2.3 混凝土桥梁疲劳评估
    8.3 桥梁加固与改造
        8.3.1 混凝土桥梁组合加固新技术 (长安大学王春生老师提供原稿)
        8.3.2 桥梁拓宽关键技术 (东南大学吴文清老师提供原稿)
        8.3.2. 1 桥梁拓宽基本方案研究
        8.3.2. 1. 1 拓宽总体方案分析
        8.3.2. 1. 2 新旧桥上下部结构横向连接方案
        8.3.2. 2 横向拼接缝的构造设计
        8.3.2. 3 桥梁拓宽设计标准研究
        8.3.2. 4 新桥基础沉降变形对结构设计的影响
        8.3.2. 4. 1 工后沉降差的定义
        8.3.2. 4. 2 梁格法有限元模型中沉降变形施加方法
        8.3.2. 5 混凝土收缩徐变对新旧桥拼接时机的影响
        8.3.2. 6 错孔布置连续箱梁桥的横向拓宽技术
        8.3.2. 7 三向预应力箱梁横向拓宽技术研究
9 其他
    9.1 无缝桥 (福州大学陈宝春老师提供原稿)
        9.1.1 研究概况
        9.1.2 发展方向
    9.2 桥面铺装 (东南大学钱振东老师提供原稿)
        9.2.1 钢桥面铺装的结构力学分析方法
        9.2.2 钢桥面铺装材料
        9.2.2. 1 铺装用典型沥青混凝土材料
        9.2.2. 2 防水粘结材料
        (1) 沥青类防水粘结材料
        (2) 反应性树脂类防水粘结材料
        9.2.2. 3 钢桥面铺装材料性能
        (1) 级配设计
        (2) 路用性能
        (3) 疲劳断裂特性
        9.2.3 钢桥面铺装结构
        9.2.3. 1 典型的钢桥面铺装结构
        9.2.3. 2 钢桥面铺装复合体系的疲劳特性
        9.2.4 钢桥面铺装的养护维修技术
        9.2.5 研究发展方向展望
        (1) 钢桥面铺装结构和材料的改进与研发
        (2) 基于车-路-桥协同作用的钢桥面铺装体系设计方法
        (3) 施工环境下钢桥面铺装材料及结构的热、力学效应
        (4) 钢桥面铺装养护修复技术的完善
    9.3 斜拉桥施工过程力学特性及施工控制 (西南交通大学张清华老师提供原稿)
        9.3.1 施工过程可靠度研究
        9.3.1. 1 施工期材料性质与构件抗力
        9.3.1. 2 施工期作用 (荷载) 调查及统计分析
        9.3.1. 3 施工期结构可靠度理论研究
        9.3.2 施工控制理论与方法研究
        9.3.2. 1 全过程自适应施工控制理论及控制系统
        9.3.2. 2 全过程控制条件下的误差传播及调控对策
    9.4 计算机技术对桥梁工程的冲击 (长安大学梁鹏老师提供原稿)
        9.4.1 高性能计算
        9.4.1. 1 高性能计算的意义
        9.4.1. 2 高性能计算的实现及算法
        9.4.1. 3 抗震分析
        9.4.1. 4 计算风工程
        9.4.1. 5 船撞仿真
        9.4.1. 6 高性能计算中的重要问题
        9.4.2 结构试验
        9.4.3 健康监测
        9.4.4 建筑信息模型
        9.4.5 虚拟现实技术
        9.4.6 知识经济时代的桥梁工程建设特征[1]
1 0 结语

四、干旱地区生态环境劣化的经济损失计算方法初探(论文参考文献)

  • [1]水资源短缺地区河道生态基流的计算方法及保障补偿机制研究 ——以渭河干流宝鸡段为例[D]. 成波. 西安理工大学, 2021
  • [2]季冻区分散性土特性与破坏机理研究[D]. 王理想. 中国地震局工程力学研究所, 2021(02)
  • [3]综合干旱指数构建及其适用性研究 ——以黑河流域中上游为例[D]. 郭盛明. 西北农林科技大学, 2021(01)
  • [4]中亚夏季极端降水变化的多尺度特征及影响机理[D]. 马茜蓉. 南京信息工程大学, 2021
  • [5]酸性大气环境下RC框架剪力墙结构抗震性能与地震韧性评估[D]. 周炎. 西安建筑科技大学, 2021
  • [6]风积沙粉体混凝土耐久性能及服役寿命预测模型研究[D]. 李根峰. 内蒙古农业大学, 2019
  • [7]改进的工程结构全寿命设计理论及全寿命成本模型[D]. 王竹君. 浙江大学, 2018
  • [8]西北地区干旱灾害时空统计规律与风险管理研究[D]. 王鹏涛. 陕西师范大学, 2018(12)
  • [9]应对气候变化的滨海城市空间结构适应模式研究 ——以厦门为例[D]. 郑开雄. 天津大学, 2018(06)
  • [10]中国桥梁工程学术研究综述·2014[J]. 《中国公路学报》编辑部. 中国公路学报, 2014(05)

标签:;  ;  ;  ;  ;  

干旱区生态环境恶化经济损失计算方法初探
下载Doc文档

猜你喜欢